
Preprint
UCRL- JC-148028

Asserting Performance
Expectat ions

J.S. Vetter, P. Worley

This article was submitted to
SC2002: High Performance Networking and Computing, Baltimore,
Maryland, November 16-22,2002

July 24,2002

U.S. Department of Energy

Approved for public release; further dissemination unlimited

DISCLATMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at http:/ /www.doe.cov/bridEe

Available for a processing fee to U.S. Department of Energy
and its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reDorts@adonis .OStl.POV
'

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: . w . v
Online ordering: -./ov/orderine.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department's Digital Library
http://www.llnl.gov/tid/Library.html

http://www.llnl.gov/tid/Library.html

*

Asserting Performance Expectations

Jeffrey S. Vetter Pat Worley

Lawrence Livermore National Laboratory
Livermore, CA 94551

Oak Ridge National Laboratory
Oak Ridge, Tennessee

vetter3@llnl.gov worleyph@ornl.gov

Traditional techniques for performance analysis provide a means for extracting and analyzing raw
performance information from applications. Users then reason about and compare this raw performance data
to their performance expectations for important application constructs. This comparison can be tedious,
diEcult, and error-prone for the scale and complexity of today's architectures and software systems. To
address this situation, we present a methodology and prototype that allows users to assert performance
expectations explicitly in their source code using performance assertions. As the application executes, each
performance assertion in the application collects data implicitly to verify the assertion. By allowing the user
to specify a performance expectation with individual code segments, the runtime system can jettison raw data
for measurements that pass their expectation, while reacting to failures with a variety of responses. We
present several compelling uses of performance assertions with our operational prototype including raising a
performance exception, validating a performance model, and adapting an algorithm to an architecture
emDiricallv at runtime.

I Introduction
Traditional techniques for performance analysis provide a variety of mechanisms for

instrumentation, data collection, and analysis. These techniques, such as tracing
communication activity, sampling hardware counters, and profiling subroutines, allow
users to capture raw data about the performance behaviors of their code. Then, users
reason about and compare this raw data with their performance expectations for
individual application constructs. In most cases, these techniques do not support users
explicitly defining these performance expectations in source code, forcing users to reason
fiom the perspective of absolute performance for every performance experiment and
every application construct. For the scale and complexity of today's architectures and
software systems, the volume of raw output can easily overwhelm any user. This
comparison can be tedious, difficult, and error-prone.

To address this issue, we present methodology and prototype system, called
perjiormance assertions @A), that provides the user with a methodology to assert
explicitly performance propertie? for application code constructs within their
applications. The PA runtime, then, implicitly gathers pdormance data based on the
user's assertion and, then, verifies this expectation at runtime. By allowing the user to
specify a performance expectation with individual code segments, the runtime system can
jettison raw data for measurements that pass their expectation while reacting to faiZures
with a variety of responses. Very simply, this approach attempts to automate the testing
of performance properties of evolving complex software systems and the development of
software performance models.

To this end, we have implemented an operational prototype for performance
assertions. Our experience with this prototype on several applications and with a variety
of response mechanisms indicates that performance assertions can improve the traditional
process of performance analysis. That said, we are continuing to improve our prototype
based on several observations fiom these experiments. Key among these observations is

7/24/2002 10:24:00 AM

mailto:vetter3@llnl.gov
mailto:worleyph@ornl.gov

the fact that users will need analytical support in determining the bounds for performance
assertion expressions. Also, our initial prototype considers only serial perfonnance
metrics focused on one processor. We plan to extend this set of metrics in the prototype
to include communication, threading, and YO activity.

PAPI-start(CYCLES,INSTRUCTIONS);
for (j = 1; j c= lastrow - firstrow + 1; j++)

#passert (Sipcgeak * 0.5 c $ipc)
for (j = 1; j e= lastrow - firstrow + 1; j++)
f

s u m = 0.0;
for (k = rowstr[j]; k c rowstrfj + 11;

k++)

1
w[jl = sum;

1
PAPI-stop (vals) ;
/* Analyze or store PAPI values */

s u m = s u m + a[kl p[colidx[kll;
{

I
w[jl = sum;

I

s u m = 0.0;
for (k = rowstr[jl; k c rowstrfj + 11;

k++)

s u m = s u m + a [kl * p [colidx [kl I ;
(

- 2 -

In summary, the overall goal of this implementation is to create a source code
annotation system for applications that allows a user to specify a performance expectation
for a given code segment. At runtime, the assertion will measure the necessary metrics,
compare them to the expectation, and, if violated, take some action (e.g., alert the user,
enable performance monitoring, adapt the current system). Performance assertions
perform three critical tasks. First, they allow the user to define a portable performance
expectation in the context of their application design while fkeeing them from focusing on
instrumentation. Second, PAS limit the amount of data that users must encounter during
the performance analysis process. By highlighting only those portions of the code thatfad
to meet the userdefined expectation, PAs can preempt data generation before it is thrust
upon the user. Third, PAS compel users to express their expectations quantitatively with
an expression that reflects their application design, and it liberates them from specific
instrumentation and portability concerns.

2 Design of Performance Assertions
The design of performance assertions has three distinct components: a performance

assertion language, source code annotations, and a runtime system. As illustrated by
Figure 3, at step 0, a user annotates source code with performance assertions using the
PA language. Next, at step 0, the user executes the annotated source code and during this
execution, the PA runtime system collects performance data with instrumentation and
evaluates the performance expectations. Finally, at step 0, assertions generate a variety
of responses. Assertions that pass can simply be ignored, while failures can trigger an
array of responses. For example, in @a, the final PA report for the application indicates
that the assertion failed 13 of 700 invocations.

I Original
Source Code I Annotated

Source Code

Figure 3: Performance Assertion Overview.

The user defines their expectation in our PA language with specific source code
annotations; this language provides access to various performance metrics as well as key
features of the architecture and user parameters. That is, expressions can contain
references to values such as Swtime (wall clock time), $loads (number of memory load
instructions), $flops (number of floating point operations), Sdlmisses (number of L1 data
cache misses), Smstallcycles (cycles stalled on memory accesses), or Sipc (instructions
per cycle). The PA runtime invokes the proper instrumentation and data collection
facilities for each expression region. PAS can also reference values that represent
architecture characteristics, such as $fppeak (theoretical floating point peak rate), and

- 3 -

arbitrary application values can be integrated into the expression using format
specifications similar to scanf.

The runtime system captures the appropriate metrics and evaluates expressions as
necessary, responding with the appropriate action when an assertion fails. The response
can take a number of forms. For instance, it can increment a counter, make a callback to
userdefined subroutine, write the data to a log file, or drive feedback into the application
or a separate runtime system.

2.1 Performance Assertion Language
Our PA language allows a user to specify an expression that contains a variety of

tokens that represent empirically-measured performance metrics, constants, variables,
mathematical operations, a subset of intrinsic operations, and format specifiers. Format
specifiers allow the expressions to incorporate values from the application directly.

Consider the following example expressions.

$nInsts / $nCycles > 0.8

Expression (1) has five tokens. The left-hand side CHS) of this expression specifies
the ratio of number of instructions completed to the number of cycles. The relational
operator tests whether the LHS is greater than the constant 0.8, or the right hand side
(RHS). When this expression is first evaluated by the PA runtime system, it determines
that the underlying instrumentation must collect two performance metrics: number of
instructions completed (nInsts) and number of cycles (nwcles). Subsequent invocations
read these metrics from the instrumentation, instantiate the expression's variables, and
evaluate the expression.

(1)

$nInsts / $nCycles (0.4 * Sipcgeak) (2)
Expression (2) is very similar to expression (1); however, the RHS has been replaced

by another expression that contains an architecturally-dependent constant: $ ipcgeak. In
order to provide portable, architecture-independent parameterized expressions in our PA
language, we have included an array of predefined constants that demonstrate the
performance of the underlying architecture. These constants are loaded at initialization
and they remain constant throughout the application execution. The value for Sipcgeak
is substituted into the expression at runtime. These constants can be theoretical they can
also be empirically measured values, such as those generated with microbenchmarks or
machine signatures.

$nInsts / $nCycles (%g * Sipcgeak) , &X (3)
Expression (3) is very similar to expression (2); however, the RHS has been

augmented to include state directly fiom the application with the format specifier %g and
the variable address &x. This capability allows users to specialize expressions for specific
parameters, such as the size of the workload.

Aside from expressiveness, our design of this performance assertion language had
several goals, and we attempted to strike a practical balance among these requirements.
First, our language must have a flexible, architecture-independent syntax that allows
users to express a performance expectation for a component of their source code. With
this syntax, the user can meld the performance properties (or application signatures), in a
statement that identifies an expectation for common language and library constructs (e.g.,

- 4 -

loops, BLAS, or MPI). Second, the language should be relatively simple to interpret,
implement, and validate. Because the PA runtime must evaluate the expressions at
runtime, it is important that the interpretation and implementation be efficient to
minimize PA overhead on the application. Third, as the earlier examples demonstrate, we
need expressive power to allow users to capture complex and important performance
characteristics of their applications. We expect the need for complex expressions to grow
as users gain more experience with assertions, and as the number of performance metrics
increases.

Although our current prototype is realized as a library, our language specification is
not dependent on our implementation; we plan to integrate performance assertions with a
compiler, so that PAS can easily benefit fiom the extensive semantic knowledge of the
source code. Indeed, compilers might insert performance assertions automatically to aid
in profiledirected compilation [3,9].

Another benefit of a language specification of performance properties is the
opportunity for optimization of the assertion expressions. We consider them portable and
flexible because they allow the performance monitoring system to select the appropriate
instrumentation and collection mechanisms. For example, two approaches to gathering
hardware metrics are sampling and counting. With performance assertions, the runtime
system can select the appropriate approach based on the requirements of the expression.
Furthermore, the language can be optimized for the underlying monitoring system on the
target architecture, which is similar to Snodgrass’ work [ll]. Although our language is
not as general as a relational query language, it does offer many opportunities for similar
optimizations.

2.2 Source Code Annotations
Our current implementation relies on source code annotations in the form of library

calls to construct and evaluate performance assertions for specific regions of code. The
annotations delimit a region of code and an assertion as Figure 2 shows. The very first
time an assertion is invoked, the runtime system parses the expression to determine the
necessary performance metrics to gather. Subsequent invocations enable the necessary
instrumentation. At completion of an assertion, the PA runtime collects data fiom the
instrumentation, parses the expression again, and generates an answer. The runtime
system, then, compares this value to the user specified bounds using the relational
operator. The PA runtime can simply discard satisfied assertions or it can keep a statistics
about these values. If the expression fails this comparison, it can trigger a response; this
response is selectable. Our syntax will allow users to determine the magnitude of
response for a violated performance assertion. The value can be ignored, counted,
recorded to a log, enabled more detailed monitoring, invoke a userdefined callback, or
triggering some corrective action, possibly using an adaptation system like Harmony [7]
or Autopilot [lo]. Naturally, these annotations are easily disabled both at runtime and at
compile time. A promising alternative that we are beginning to investigate is to tightly
couple insertion of performance assertions with compilation so that the combined system
can generate assertions automatically using the additional knowledge that a compiler
supplies.

- 5 -

2.3 Runtime System
In conjunction with source code annotations, our initial implementation of

performance assertions uses a runtime system to define assertions, delineate code regions,
enable instrumentation, collect data, evaluate expressions, and react to assertion results.

As the application encounters these PA annotations for the first time, these subroutine
calls to the PA runtime take several steps to initialize the assertion. During initialization,
the PA runtime allocates and initializes memory for data storage, parses the expression to
determine which tokens represent performance metrics, creates a metric register file that
indicates which metrics the assertion must measure during every invocation, and
configures any necessary instrumentation. At the end of initialization, the PA runtime
enables instrumentation. Subsequent calls to the assertion enable and disable
instrumentation, collect data, and evaluate the expression, taking the appropriate action if
the assertion fails. The PA runtime provides a variety of responses to assertions.
Furthermore, each assertion captures statistics for the values generated fi-om the
expressions. These statistics include minimum, maximum, and an accumulated total.

Performance assertions provide an array of mechanisms for responding to failed
assertions. A failed assertion can trigger an increment to a failure counter, a write to a log
file, more instrumentation focused on a specific region, a userdefined callback, or other
feedback.

2.4 Generating Bounds
We are identiwg promising modeling methods that are necessary for determining

performance properties of a system and that exploit the additional information acquired
fi-om performance assertions. Clearly, one primary component of performance assertions
is the ability to judge when an assertion has failed. Our initial work exploits other
performance measures such as low-level benchmark and machine signatures. For
example, a user could state in an expression that they expect a code segment to perform
equivalent to the triad benchmark, which is part of the Stream memory suite. Later, we
plan to explore more automated techniques. In one instance, the system generates a
performance history for each assertion and then compares the assertion with this
statistical history across architectures.

3 Compelling Uses of Performance Assertions
Performance assertions have many compelling uses. First, assertions can highlight

performance results that do not met user modeled expectations. Second, PAS can
highlight differences across platforms. Third, PAS can draw attention to regions of code
that have changing performance expectations as the algorithms evolve. Fourth, PAS can
instantiate a performance models on small regions of code, alerting a user that their
modeling assumptions are invalid. Fifth, PAS can trigger a callback into the application or
adaptively select among a variety of implementations based on the PA expression.

3.1 Experiment Platform
We ran our tests on two IBM SP systems located at Lawrence Livermore National

Laboratory. This first machine is composed of sixteen 222 MHz IBM Power3 8-way
S M P nodes, totaling 128 CPUs. Each processor has three integer units, two floating-point

- 6 -

units, and two loadstore units. Its 64 KB L1 cache is 128 way associative with 32 byte
cache lines and L1 uses a round-robin replacement scheme. The L2 cache is 8 MB in
size, which is four-way set associative with its own private cache bus. Each SMP node
contains 4GB main memory for a total of 64 GB system memory.

This second machine is composed of 332 Mhz 604e 4-way SMP nodes’, totaling 1344
CPUs. Each compute node has a peak performance of 2.656 GigaOPS. The 604e
processor has one floating-point unit and one loadstore unit. Its 32KB L1 cache is 4 way
associative with 32 byte cache lines and L1 uses an LRU replacement scheme. The
processor has a 500KB L2 cache.

3.2 Case I: Raising Performance Exceptions
To illustrate the use of performance assertions’, we demonstrate how a user can

instantiate performance expectations for a given code segment. Then, when that
expectation is violated on a different architecture, the user is immediately notified by
PAS.
for (j = 1; j c- lastrow - firstrow + 1;

j++)

s u m = 0.0;
fo r (k = rowstr[jl; k c rOWStr[j + 11 ;

k++)

s u m = s u m + a[k] p[colidx[kll;
(

I
w[jl = sum;

1

for (j = 1; j c= lastrow-firstrow+l; j++)

int iresidue;
double suml, sum2;
i = rowatr [jl ;
iresidue = (rowstr[j+ll-i) Z 2;
suml = 0 . 0 ;
sum2 = 0.0;
if (iresidue == 1)

fo r (k = i+iresidue; k c= rowstr[j+ll-2;

suml = suml + a [kl p [colidx [kl I ;
sum2 = sum2 + a[k+ll pCcolidx[k+lll;

(

s u d = s u d + a [il *p lcolidx[il I ;

k += 2) (

I
w[jl = suml + sum2;

Figure 4: Sparse matrix vector multiply
for NAS CG.

Figure 5: Unrolled by 2 version of
sparse matrix vector multiply for NAS

CG.

Our focus is the NAS Benchmark CG, version 2.3. This benchmark uses a sparse
matrix vector multiply (SMVM) as illustrated in Figure 4. Its notorious memory access
patterns generally require that efficient implementations depend directly on the platform’s
underlying memory architecture. In fact, many versions of SMVM exist, each tuned for
individual memory architectures. As developers tune this code segment, they have
expectations for this code on each architecture. Currently without PAS, there is no way
for a developer to insert their performance expectations into the source code. Moreover,
the only indication that this code segment is not performing well is overall poor
application performance.

1 i

SMVM VERSION I POWER2 (604E) I POWER3 (630)
1 Not unrolled Mu) I 7 8 ~ 3 I 15 -24 1
1 Unrolled bv 2 (u2) I 84.08 I 15.20 I
1 Unrolled by 8 (38) I 82.53 I 15.03 I

Table 1: Performance of SMVM versions on example architectures.

In Table 1, our experiments show that the tuned performance of SMVM executes
quite differently on these two different processors. Assumptions about performance of

-7 -

this code on the PowerPC are not transferable, even though they are in the same
processor family. On the Power2, the original SMVM 0 performs best while on the
Power3, the U8 version performs best. More strikingly, the performance optimum is
exactly the opposite of the poorest version on the other processor.

Performance assertions help to solve this problem because they allow us to insert our
expectations directly into the code. First, we add performance assertions to our code with
expectations for the IBM 604e processor and then we migrate the code to the IBM Power
3 processor. These chips have different memory and functional unit structures. Using
specific information about the memory systems, a user could construct a specific
assertion expression, such as $dlcachemisses/$loads, or they could rely on common
performance measures, such as instructions per cycle, or even wall clock time scaled by
the number of nonzero terms in the operation, to bind their performance property to the
target processor. This flexibility allows users to construct the most appropriate expression
for their performance property without regard to the mechanics of instrumentation or data
collection. Then, when these assumptions are violated, the assertion raises a performance
exception.

3.3 Case I I : Validating Performance Models
High performance soha re usually contains models of performance. In fact, m y

libraries record metrics about their performance. For example, the Petsc library [2] allows
developers to record the number of floating point operations performed during a
computational phase. As shown in Figure 6, PA s can easily validate the model by using
underlying instrumentation to check the calculation, even integrating application specific
data into the expression.

1: Pa-start(&pa, n$nFlopsm, PA-AEQ, "11 * %g * %gn, Gym, r a n) ;
2 : for (j=ys; jcys+ym; j++) {
3: for (i=xs; i<xs+xm; i++) {
4: if (i == 0 I I j == 0 I I i == Mx-1 I I j == M y - 1) {
5: f [j l [i l = xlj l [i l ;
6: } else {
7: U = x[j l [il;
8: uxx = (two*u - x[j l [i -11 - x[j l [i + l l) *hydhx;
9: UYY = (two*u - xIj-11 [i l - x[j+11 [il)*hxdhy;

10: f [j] [i] = uxx + uyy - sc*PetscExpScalar(u) ;
11: 1
12: 1
13: }
14 : Pa-end (pa) ;

. 15 : PetscLogFlops (ll*ym*xm) ;

Figure 6: Performance Model Validation.

As the library evolves over time, it is ported to new architectures, and is optimized
with new techniques. it is useful to validate these models against empirical data. In this
example, the library logs the number of flops performed by the doubly nested for loop
with the PetscLogFlops (ii*ym*~m) subroutine. Performance assertions can help validate
this claim. At line 1, the Pa-start describes the expression and delineates the beginning
Of the code Segment: Pa-start (&pa, v*$nFlopsvv, PA-AEQ, "11 * %g * %g", &ym, &xm).

This routine takes as arguments the expression, a relational operator, and threshold or
bounds. The expression in this example is the number of floating point operations,
$nFlops, performed in the code segment. Next, the expression is compared using the
relation operator, PA-AEQ, which represents approximately equal, or, in this case, *lo% of
the threshold value (11 %g * %g). At line 14, Pa-end signals the end of the code

- 8 -

segment for the matching Pa-start. Pa-end collects all the relevant data, calculates the
expression, and compares it to the threshold using the relational operator. If this
expression fails, the default action notifies the user in a report at application termination.
Clearly, it is easy to disable these assertions at either compile- or run-time using compiler
options or environment variables, respectively. Once the validation is complete, the
assertions can be removed.

3.4 Case I 1 I: Local Performance-Based Adaptation
Performance assertions can also change local application state in response to the

outcome of its expression. For example, in our prototype, a PA can invoke a user-defined
function that can change the state of the application, or select among several alternative
implementations based on testing the performance of the alternatives at runtime. For
example, our experiences with a Monte Carlo simulation allow us to alter a variety of the
application-defined variables in response to performance conditions [5].

Reconsider our example in Case I of multiple versions of SMVM. In this example,
the user selects one version of the implementation at compile time. Then, if the
performance expectation in not satisfied, PAS can notify the user, who in turn, changes
the implementation, recompiles the application, and executes the code again. Indeed, in
this example, we can easily use PAS to evaluate several different versions of the
implementation and then, based on the outcome of the samples, select one
implementation for the remainder of the application runtime. To implement this strategy,
we modify the code in three ways as Figure 7 shows. First, we separate three versions of
the implementation with a conditional statement, using a global variable to select among
these versions. Then, we register this variable with the PA runtime system. Finally, we
create a PA expression that measures the quantity we are interested in minimizing along
with a range of possible choices.

pa-t pa-sm;
int smvm-choice = 1;
pa-start(&pa-smvm,"$nCycles/$nInsts",PAR_MINIMIZE, &smvm-choice, 3) ;
switch(smvm-choice)

case 1:
{

/* SMVM not unrolled */
break;

case 2:
/* SMVM unrolled by 2 */
break;

case 3:
/* SMVM unrolled by 8 */
break;

I
pa end(pa s m) ;

Figure 7: Performance-based adaptation example using performance
assertions.

As the program executes, the PA runtime samples the performance of each
implementation using the PA expression as provided by the user. Then, after some
number of samples (e.g., in this case, 3 * 20 = 60), it selects one implementation choice
by selecting the implementation with the minimal average value of the expression across
all samples. Then, this PA disables itself and it remains dormant for the remainder of the
application execution. Other PAS in this application operate independently. There are a
practically innumerable number of ways to adapt application state in response to PAS.

- 9 -

Wl
2.32

Table 2: Measured CPI on SMVM
implementations.

M u2 V I PA

,
I

Figure 8: CG performance using various SMVM
implementations including PA adaptation.

4 Related Work
Many research efforts have modeled the performance properties of applications [6,

81. In fact, the name of performance assertions is not in and of itself novel. However, our
technique and prototype, which are novel, allow users to assert explicitly in their code
their performance properties, which can be verified empirically at runtime. In contrast to
earlier'work by Per1 [8], this research focuses on runtime techniques to judge if an
assertion has met its expectation. Perl's work checked for these properties in event logs,
not in the application at runtime. The &ADS project (http://nhse2.cs.rice.edu/grads/) is
addressing issues of application performance and performance contracts [13] on
computational grids. Valuable work by the APART consortium has culminated in a
performance property specification language: ASL. ASL allows developers to write
complex properties describing patterns in performance data, but current implementations
do not allow users to plant their expectations directly in their source code, where they can
be measured and verified at runtime. Also, we plan to provide users with a more general
framework for reacting to failed assertions [12]. For example, our current work allows
assertions to perform local adaptations in response to assertions [SI.

5 Conclusions
Traditional techniques for performance analysis provide a means for extracting and

analyzing raw performance information from applications. Users then reason about and
compare this raw performance data to their performance expectations for important
application constructs. This comparison can be tedious, difficult, and error-prone for the
scale and complexity of today's architectures and software systems. To address this
situation, we present a methodology and prototype that allows users to assert
performance expectations explicitly in their source code using performance assertions. As
the application executes, each performance assertion in the application collects data
implicitly to verify the assertion. By allowing the user to specify a performance
expectation with individual code segments, the runtime system can jettison raw data for

-10 -

http://nhse2.cs.rice.edu/grads

measurements that pass their expectation, while reacting to failures with a variety of
responses. We present several compelling uses of performance assertions with our
operational prototype including raising a performance exception, validating a
performance model, and adapting an algorithm to an architecture empirically at runtime.

Acknowledgments
This work was performed under the auspices of the U.S. Department of Energy by

the University of California, Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48. This paper is available as LLNL Technical Report UCRL-JC-
145028.

References
J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.-T.A.
Leung, R.L. Sites, M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl,
“Continuous profiling: where have all the cycles gone?,” ACM Trans. Computer
Systems, 15(4):357-90, 1997.
S . Balay, W.D. Gropp, L. Curfinan McInnes, and B.F. Smith, “Efficient
Management of Parallelism in Object Oriented Numerical SoRware Libraries,” in
Modern Software Tools in Scient$c computing, E. Arge, A.M. Bruaset et al.,
Eds.: Birkhauser Press, 1997, pp. 163-202.
C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, “ADIFOR -
Generating Derivative Codes from Fortran Programs,” ScientzBc Programming,

S. Browne, J. Dongm, N. Garner, K. London, and P. Mucci, “A Scalable Cross-
Platform Mastructure for Application Performance Tuning Using Hardware
Counters,” Roc. SC2000: High Performance Networking and Computing Conf.
(electronic publication), 2000.
I.R. Corey, J.R. Johnson, and J.S. Vetter, “Micro Benchmarking, Performance
Assertions and Sensitivity Analysis: A Technique for Developing Adaptive Grid
Applications,” Roc. Eleventh EEE International Symp. High Performance
Distributed Computing, 2002.
M.E. Crovella and T.J. LeBlanc, “Performance debugging using parallel
performance predicates,” SIGPLAN Notices (ACM/ONR Worhhop on Parallel
and Disfributed Debuggind, 28, no.12:140-50, 1993.
J.K. Hollingsworth and P. Keleher, “Prediction and Adaptation in Active
Harmony,” Proc. HPDC, 1998, pp. 180-8.
S.E. Per1 and W.E. Weihl, “Performance assertion checking,” Roc. 14th ACM
Symp. Operating Systems Principles, 1993, pp. 134-45.
D. Quinlan, M. Schordan, B. Philip, and M. Kowarschik, “The Specification of
Source-To-Source Transformations for the Compile-Time Optimization of
Parallel Object-Oriented Scientific Applications,” Roc. 14th Workshop on
Languages and Compilers for Parallel Computing (LCPC200 l), 2001.
R.L. Ribler, J.S. Vetter, H. Simitci, and D.A. Reed, “Autopilot: adaptive control
of distributed applications,” Roc. Seventh Int’l Symp. High Performance
Distributed Computing (HPDC), 1998.

1:l-29, 1992.

-11 -

I ‘

[111

[12]

R. Snodgrass, “A Relational Approach to Monitoring Complex Systems,” ACM
Trans. Computer Systems, 6: 157-96, 1988.
J.S. Vetter and K. Schwan, “Techniques for delayed binding of monitoring
mechanisms to application-specific instrumentation points,y7 Proc. Intl Cod.
Parallel Processing (ICPP), 1998, pp. 477-84.
F. Vraalsen, R.A. Aydt, C.L. Mendes, and D.A. Reed, “Performance Contracts:
Predicting and Monitoring Grid Application Behavior,” Proc. GRID 2001:
Second International Workshop on Grid Computing, 200 1 , pp. 154-65.

[13]

-12 -

